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I. Introduction

Measured flow variables near the test section boundaries, used to guide adjustments of

the walls in adaptive wind tunnels, can also be used to quantify tile residual interference.

Because of a finite number of wall control devices (jacks, plenum compartments), the

finite test section length, and the approximation character of adaptation algorithms, the

unconfined flow conditions are not expected to be precisely attained even in tile 'fidly'

adapted stage 111,121.

The procedures for the evaluation of residual wall interference are essentially the same

as those used for assessing the corrections in conventional, non-adaptive wind tunnels.

Depending upon the number of flow variables utilized, we speak of one- or two-variable

methods [3]; in two dimensions also of Schwarz- or Cauchy-type methods [4].

The one-variable methods use the measured static pressure distribution at the test sec-

tion boundary and supplement it with the far field representation of the model, estimated

from its geometry and measured forces.

The two-variable methods use measurements of static pressure and normal velocity at

the test section boundary, but do not require any model representation. This is clearly of

an advantage for adaptive wall test sections, whict, are often relatively small with respect

to the test model, and for the variety of complex flows commonly encountered in wind

tunnel testing. For test sections with flexible walls the normal component of velocity is

given by tile shape of the wall, adjusted for the displacement effect of its boundary layer.

For ventilated test section walls it has to be measured by tile Calspan Pipes, Laser Doppler

Velocimetry, or other appropriate techniques.

The interface discontinuity method, also described, is a 'genuine' residual interference

assessment technique. It is specific to adaptive wall wind tunnels, where the computation

results for the fictitious flow in the exterior of the test section are provided.

II. Linear Flow Analysis

Since the adaptive walls introduce only minor disturbances to the unconfined far field

of the test model, the linearization of the potential equation near the walls is applicable

as long as the flow remains subcritical there.
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The governing equation for the disturbance velocity potential is

where//= X/_ - M_, and Moo < 1 is the stream Mach number.

The scaling of the streamwise coordinate,

• ': (2)

reduc,.s Eq.(1) to Laplace's equation, Va_b = 0.

The linear flow region where _ satisfies Eq.(1) is shown schematically in Fig.la. It

excludes the volume occupied by the test model, its viscous and transonic flow regions, and

the wind tunnel exterior, where no real flow exists. The outer bounding surface, enclosing

the test model, is expected to lie entirely within the linear flow region, off the viscous or

nonisentropic flow at the walls.

Using the principle of linear superposition, the disturbance velocity potential is split
as [5l

¢ : + (3)
where _)m is that due to the model in free air and _bw is that due to wall interference.

The model potential, _bm, satisfies Eq.(1) in the infinite space outside the model and

the adjacent nonlinear flow regions, Fig.lb.

The wall interference potential, _bw, is assumed to satisfy Eq.(1) in the entire test

section interior, including the model and its nonlinear flow regions, as indicated in Fig.lc.

This assignment of the singular and nonsingular parts as the effects of the model and

tile walls respectively is consistent with the concept of Green's function for the Laplace

operator. Accordingly, it is rigorous for an infinitesimal model, but only approximate for
a finite-size model.

The derivatives of _bw are interpreted as disturbances to stream velocity components.

They are usually evaluated at the model reference station or as averages over the model

and interpreted as global corrections to stream Mach number [6]

- 1 M2 O_bu,
AMoo= (1+_ oo)Moo Ox ' (4)

and to flow angles (in radians)

A%- O_,w
Oy and A_.- Oq_w " (s)

From the spatial variations of these corrections over the model additional streamline cur-

vature and buoyas_cy effects on model force data can be determined.

In connection with adaptive wall wind tunnels, another type of the disturbance velocity

potential is helpful: that corresponding to the 'fictitious' flow outside the wind tunnel.
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The potential, denoted here by the symbol ¢, satisfies Eq.(l) in the exterior of the outer

bounding surface, Fig.ld. The surface, separating the real wind tunnel flow and the

computed exterior flow is also termed the interface. Tile aim of adaptation is to adjust tile

walls so that ¢ and ¢ constitute a single potential ¢,,,, continuous at tile interface. There

is a direct relationship between ¢,_ and the difference ¢ - ¢ at the interface.

A. One-Variable Method

Tile method, due to Capelier, Chevallier and Bounio117], is tile most popular technique

for the assessment of subsonic wall interference in wind tunnels with perforated walls. It

retains the essential features of the classical wall interference approach [5], but replaces

the idealized wind tunnel boundary conditions by

a¢ i
o_ 2cp' (o)

where Cp is the measured boundary pressure coefficient. The control surface along which

the pressure is measured should be some distance away from the wall, where tile distur-

bances of individual holes (perforations) are smeared out. The application of the method

to test sections with slotted walls is more problematic as the flow becomes homogeneous at

rather large distances from the walls, and the pressures measured directly on slat surfaces

do not necessarily represent the averaged values.

Tile axial component of wall interference velocity,

satisfying inside the test section

#202u_

is obtained from its boundary values

acw
--9u,o: -az (_)

02Urn _2ttw
--+--+ -o, (s)

i)y 2 Oz 2

1 OCm

,,_ = -_cp ax (9)

as a solution of the interior Dirichlet problem. The transverse velocity components,

acw (lo)°a¢_ and w_ - ,
Oy Oz

can be obtained from u_, by integrating the irrotational-flow conditions

OVu, Ouw OWw Ouw
- and - (11)

Ox Oy Ox Oz

along a path from the upstream end of the test section.
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The Dirichlet problem for Laplace's equation is one of the best explored problems

in mathematical physics and there are a large number of methods available to solve it

numerically. A natural approach is to solve the problem in terms of the double layer

potential [8], leading to a doublet panel method [9]. For simpler geometries, closed form

solutions are obtainable using integral transforms [71or the Fourier method I101-1121.
The complex-variaSle treatment [7] of the two-dimensional problem leads, as pointed

out in Ref.[4], to the Schwarz problem, consisting of determining an analytic function

inside a domain from its defined real part on tile boundary. Theory [13] shows that

the integration of Cauchy-Riemann equations (irrotational-flow conditions) introduces an

unknown imaginary constant, which needs to be specified in order to make tlle solution

unique (specification of tile upstream flow angle).

The accuracy of tile one-variable method depends greatly on tile accuracy with which

the free air potential 4,,,, can be predicted on the control surfaces 114],[15]. Since the

far field of _bm is normally evaluated using the measured model loading, subject to wall

interference, the prediction tends to be more exact near a fully adapted stage. However,

when compared to the relative size of the model, the adaptive test sections are usually

much narrower than the conventional ones, so that the representation of flow near the

walls ill terms of tile model far field may not be satisfactory.

Another source of inaccuracy is the finite length of the test section and sparseness of

the experimental pressure data. The boundary values of uw have to be interpolated or

extrapolated over a complete boundary (closed or infinite), in order to make the Dirichlet

problem soluble. The adaptive test sections, which are typically longer than the conven-

tional ones, will have a slight advantage in this regard.

The method can be used to monitor tile reduction of wall interference corrections in

tile course of adaptation, but can also be incorporated into the adaptation algorithm [16].

Interference-free (unconfined) flow will be characterized by the vanishing boundary values
of t/w:

uw--0 on S. (12)

Compensation for errors of reference velocity or pressure [7], also called tile autocor-

rective property [151 or autoconvergence 117], is an important feature of the alethod. It

applies within the limits of linearization and may be stated as follows: if the error of

the (upstream) reference velocity Uoo is 6Uoo, then the perturbation velocities U - Uoo

on the boundary will be offset by -6Uoo. The ensuing incremental correction, being of

equal magnitude but opposite sign to the reference velocity error, will restore Uoo as the
reference velocity.

For the one-variable method, working with measured boundary pressures p, the auto-

corrective property can easily be verified by introducing the pressure coefficient

Cp - P- Pco
1 2 '
Poo Uoo
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and its error 16]

6Cp = -i -2 1----5--

"_ [2-(2- M:)Cp] 6U_
-- Uoo

6Uoo
-_2-- if Cp-_0.

Uoo

From Eq.(9), considering Odpm/C_X invariant, the boundary value of uw is found to have a
constant increment

6u= (13)_uw=- 6Cn_- U_o '

which is equal and opposite to the relative error of reference velocity. This incremental

correction also applies also interior points since

6Uc_

6uw(x,y,z) = U_ - constant

is a solution of Eq.(8) satisfying the boundary condition (13). There are no other possi-

bilities, as the solution to a Dirichlet problem is unique.

Besides compensating for genuine reference velocity errors, the autocorrective principle

also establishes the correspondence between U_ based on plenum pressure and actual

stream velocity in ventilated test sections.

B. Two-Variable Method

Measurement of the static pressure and normal velocity distributions along the control

surface opens the possibility of evaluating subsonic wall interference bypassing the model

representation. Tt, e two-variable method is most easily applied to solid wall test sections

where the walls can serve as control surfaces.

Independent formulations of this concept using Green's theorem are due to Ashill and

Weeks [18] and Cauchy'.s integral formula (in 2D) due to J. Smith [4].

To describe the method, we introduce the position vectors of an interior point and a

boundary point,

ro = (X'o,Yo,Zo) and r = (x',y,z), (14)

and denote by

1 (15)
G(ro,r) - 47rlro _ rl

the flmdamental solution (unit-strength source) for the three-dimensional Laplace opera-

tor.

Green's second identitygives for a function Cw harmonic in the testsection interior

f /s OG(ro,r)¢,. (ro) = [¢w(r) cDn
G(ro, r) °3¢_(r) ]dS

On
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and for a function _)m harmonic in the test section exterior

o = [4).(,)ac:(,o,r)an C(,o,r) a¢,,(,)]aS.
On

The differential and integral operations are taken with respect to the unsubscripted coor-

dinates; S is tile control surface (interface) enclosing the test section interior, and c_/On is

the derivative along the outward normal to the control surface in the transformed space
(z', y, z).

Adding the above formulae and eliminating 4),, from Eq:(3), we obtain the correction

formula of Ashill and Weeks [18]:

Cw(ro) =/Is [¢(r)ac(r°'r)On G(r°'r)O¢(r)]d"-On-J _" (16)

It expresses the interior value of the Wall interference potential in terms of boundary values

of the (total) disturbance velocity potential.

Considering the entire space, Eq.(16) describes a sectionally harmonic function Cw

having a jump discontinuity 4) across the surface S. This differs from the more conventional

representation of the wall interference potential by external singularities, where Cw is

continuous across 8 and harmonic everywhere except at the singular points. Of course,

inside the test section both representations are equivalent.

Physically, integral (16) can be interpreted as a surface distribution of doublets

OG(ro,r)

_n
with density ¢(r)

and a surface distribution of sources

G(r0, r) with density
0¢(r)

I_rt

Tile normal component of disturbance velocity Off/On can be measured directly,

whereas the potential ¢ has to be evaluated by a streamwise _ntegration of the measured

pressure coefficient, Eq.(6).

Another possibility offers the integration by parts [19], converting the surface distri-

bution of doublets into a surface distribution of (horseshoe) vortices

with density O¢(r) _ /_Cp(r). (11)
c3x' 2

Tile far upstream and downstream terms are eliminated by the virtue of

¢(ro,r)--*0 as x'--,-oo and l](ro,r)--,0 as x'_oo.

Taking in Eq.(16) tile limit as r0 becomes a point of a smooth surface element, we
obtain

1 /Is aG(r0,r) G(ro,r)O¢(r)!dS, roe S. (18)Cw(ro) = {¢(r0) + [¢(r) 0r_ _J
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A small circular neighbourhood of the singular point r0 is to be taken out from the surface

S for the doublet integral; its contribution has already been accounted for by the isolated

term _f(r0). There is no ambiguity concerning the source integral, as the contribution of

a small circular element around the point r0 is zero.

Another interesting relationship is obtained by substituting Eq.(18) in Eq.(3):

1

_m(ro) = _(ro) - /fs If(r)OG_,r)
G(ro,r):O(r)]dS,_a r0 E S.

an J
(19)

This formula, similar to that developed in Ref.[19], determines tile boundary value of the

free air potential, fro, from the measured boundary values of f and O_p/On. Provided that

the difference between the boundary values of _b and _,, is small, it may be possible to

achieve f =fm in a single adjustment of the walls. Equation (19) will then play the role

of a single-step convergence formula, a concept introduced in Ref.[20].

Alternative formulations of the correction method based on Green's theorem are given

in Refs.[21] and [22}, comparisons and accuracy aspects are discussed in Ref.1231. Model

representation, as shown above, is no longer required, but the sparseness of boundary data

and incomplete test section boundary remain as a major source of inaccuracy.

The specification of interference-free conditions in the two-variable method is straight-

forward. Setting f_, = 0 in Eq.(18) or f,,, = f in Eq.(19), we obtain

1 _b(r0) = -/fs [f(r) aG(r0,r)on
G(r0,r) Of'r']dS,[_ r0 C S, (20)

an J

which interrelates the values of f and Off/On on the bounding surface of an adapted test

section.

The descent to two dimensions is accomplished by putting

' (x',y), G(ro,r)=--I ln[ro-r[,r0= (z 0,y0), r= 27r

and replacing the surface integrals by contour integrals.

However, more readily applicable results are obtained using Cauchy's integral formula.

To illustrate this approach, we introduce the complex coordinate

z = x' + iy = -_ + ill (21)

and the complex distur}_ance velocity

°f (z,y) - .of x
w(z) = 3u(x,y) - iv(x,y) : 3_z '-_y t ,Y).

(22)

In accordance with Eq.(3), the complex disturbance velocity is decomposed as

= + (23)
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where ww is analytic in the test section interior and wm is analytic in the test section

exterior. Applying the Cauchy integral formula to a counterclockwise oriented contour C,

we obtain for an interior point zo

z fc w.(z) dz

and

1 [ w,_,(z) dz.
0 = 21r'-_Jc z - zo

Adding the integrals and eliminating wm from Eq.(23), we obtain Smith's correction for-

mula [4]:

1 /c w(z) dz, (24)= zo

expressing the wall interference velocity in terms of boundary value of the (total) distur-

bance velocity.

The Cauchy type integral along a curved path can be evaluated as indicated in Ap-

pendix. Using Eq.(22), the components of the wall interference velocity are obtained as:

= and ,,,,,(=o,yo)= .(25)

An example of wall deflections and wall pressures from the tests [24] of the 9-in chord

CAST 10-2/DOA 2 airfoil in the 13-in by 13-in flexible-wall test section x)f the

Langley Transonic Cryogenic Wind Tunnel (TCT) is shown in Fig.2. The wall pressure

distribution at the stream Mach number of 0.7 is subcritical as required. The downstream

end of the integration contour was placed so as to cut off the last three pressure points,

drifting away from the undisturbed flow conditions. The distribution of residual corrections

along the wind tunnel axis, evaluated by the two-variable method, is shown in Fig.3. The

flow in the test section is not interference free, but considering the size of the model with

respect to the test section, the corrections are certainly small.

More detailed formulae, together with residual interference evaluated for the ON-

ERA/CERT T2 flexible wall wind tunnel, can be found in Ref.[25].

Considering the entire complex plane, Eq.(24) describes a sectionally analytic function

ww having a jump discontinuity w across the contour C. This is obviously in contrast with

the conventional representation of the complex interference velocity by external poles,

allowing ww to be analytically continued across C, but only up to the location of the

poles.

The Cauchy-type integral (24) can be recast into the contour integral

(26)

where ds = [dz{ is the counterclockwise oriented contour length element.
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The integral can be interpreted as n line distribution of vortices

2n(zo- z)
with density { d,}_(z)= Re ,,(z)_ I = q,(z) (27)

and a line distribution of sources

_.(_0- z) { d,}with density o(z i = -hn w(z)i_ - -q.(z), (28)

where qt is the tangent component of disturbance velocity (positive in the counterclockwise

directio,) and q, is tile normal component of disturbance velocity (positive in the direction

of the outward normal). The correspondence with Green's theorem approach is evident.

The autocorrective property of Eq.(24) again applies [15] and is easy to verify. Starting

with rite reference velocity increment /_Uoo, the boundary value of the x-component of

disturbance velocity
U - Uoo

R--

Uoo

is found to have an increment

6,, U - (Uoo-I6tl,,o) 6Uoo
Uoo "t 6Uoo Uoo

From Eqs.(22) and (24) it follows for the increment of the cotnplex disturbance velocity at

an interior point z0

,Sw,,,(zo) - _,SU2,rifc z -dzzo- p_u.

Finally, fro,,,Eqs.(25)

_Uoo

6u=(zo, yo) = _u-_ broo ,

6v=(x.o, Uo)= 0.

A practical verification of the autocorrective property is shown in Fig.4. The reference

Mach numl,er of our example in Fig.2 was tentatively changed from 0.700 to 0.695 and

the wall pressure coefficients, used as input for the residual interference calculation, were

recalculated accordingly. Comparing Fig.4 with Fig.3, we note that the resultant Maeh

number correction curve is displaced by 0.005 in ti,e positive direction, so that the corrected

Mach n,tmber is again the same. The artgle of attack correction, as expected, is not greatly

affected I,y the cl,ange of the reference Mach n,mber.

Correction formula (24) is closely related to wall adaptation criteria for two-

dimensional testing. In the limiting process, as z0 becomes a point on a smooth segment
of the contour C we obtain

I /c w(z) dz, z0EC,_,_(,o)= ,_(_o)+ _ ;.- _o (20)
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where the (singular) integral is to be interpreted as Cauchy's principal value.

Substituting Eq.(29) in (23), we find

] 1 fcwm(zo) =  w(zo) z zodZ' zo E C, (30)

which is the limiting case of the formula given in Ref.[26]. It determines the boundary

value wm of the complex disturbance velocity due to the model in free air, in terms of

the measured values w. This result proves again that the model representation in the

two-variable method is, in theory, superfluous. However, for incomplete boundary data an

independently estimated far field of w,n may conveniently be used to aid the interpolations

and extrapolations.

Equation (30) may also be used as the two-dimensional single-step convergence for-

mula; tile case of straight line boundaries can be found in Refs.[20 ] and [27].

Setting ww = 0 in Eq.(29) or Wm= w in Eq.(30), we obtain theinterference-free
condition

1 1
--/ w(z) dz, z0_C (31)

_w(_o) - _i,c ;- z-o

1
in terms of the complex disturbance velocity on the boundary. The factor _ was left

uncancelled, to emphasize tile connection with the three-dimensional condition, Eq.(20).

Considering straight line boundaries at y = + _, we obtain in terms of disturbance
velocity components

h 1 [oo v(_z_,::l:_)
dz, (32a)

-h a f_=2)=+-
oo X -- X 0

(32b)

These 'compressible-flow' versions of Hilbert's transforms, introduced by Sears [I] as func-

tional relationships between two velocity components, define unconfined flow in a two-
dimensional test section.

C. Interface Discontinuity Method

This residual interference method, closely related to the two-variable method, utilizes

exterior flow calculations. The general idea, as proposed by Sears and Erickson 1281 is

essentially this: tile flow field is considered to consist of an experimental inner region

joined at an interface to a computed outer region. If the computed outer flow satisfies

the unconfined flow conditions and matches along the interface the inner flow, then the

combined flow field is continuous, representing unconfined flow around the model. The

matching error, or discontinuity, provides a measure of the residual interference. It can be

quantified by removing the discontinuity by a surface distribution of singularities. These

singularities do not disturb the unconfined flow condition in the outer region, but do

introduce velocity perturbations at the position of the test model, which then can be

interpreted as the usual wall interference corrections.
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As for the two-component method, Green's theorem will give us a quick answer as to

what the suitable singularities and their densities should be. Selecting ro to be an interior

point, we obtain h)r the function ¢, representing tile disturbance velocity potential of" the

fictitious flow in the exterior region

//s 0G(ro,r) G(r0,r)0¢(r)0= - bn -0n-ldS.

Subtracting it from Eq.(16), we obtain the interior value of tile wall interference potential

in terms of the differences of the interior and exterior flow potentials and their normal

derivatives along the interface:

ffs{ OG(ro,r)¢_(ro) -- [¢(r) - ¢(r)] On [ O¢!r) O¢(r) ] C(ro r) } dS. (33)On On '

Physically, integral (33) can be interpreted as a surface distribution of doublets

OC(ro,r) with density [¢(r) - ¢(r)]
On

and a surface distribution of sources

G(r0, r) with density [0¢{r ) 0¢(r) ].
t On On

The potential ¢ is obtained by solving an exterior flow problem (CFD), but Cw is

obtained by a surface integration, as in the two-variable method.

The exterior flow can be calculated as a solution of a Neumann problem, satisfying

the boundary condition

0¢(r) 0¢(r) r e S, (34)
On On '

where O¢(r)/On is the normal component of disturbance velocity on the interface. Integral

(33) then reduces to the distribution of doublets,

ffs 0G(ro, r) dS.Cw(ro) = [¢(r) - ¢(r)] On
(35)

Alternatively, the exterior flow can be calculated as a solution of a Dirichlet problem,

satisfying the boundary condition

¢(r) = ¢(r), r • S, (36)

integral (33) reduces to the distribution of sources,

Is jOe(r)¢_,(ro) =- t On
O¢(r)]C(ro,r)dS.

On
(37)
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Tile latter approach has recently been described by Rebstock and Lee [29 I.

Finally, if the wails are adjusted to satisfy tile conditions (34) and (36) simulta.eously

(a perfect match), then from Eq.(33)

_w(ro) = O,

hulicati.g that tile flow inside tile test section is interference free. Tile conditio.s of flow

tangency a.d equal pressures along the interface imply that the desired interface is a

stream t.be. This streamlining principle for an adaptive wall test section, introduced by

Goodyer [21, is of course quite general and not just restricted to linear subsonic flow.

The Cauchy integral approach, applicable to two-dimensional flow, proceeds along

tile similar li.es. Considering the complex disturbance velocity _ of tile fictitious flow,

analytic i. the exterior region and vanishing at infinity, then for an interior point zo it

follows

0"-- _i'Jc' "--_Z -:" Zo "

Subtracting it from Eq.(24), we obtain

(38)

This Cauchy type integral can again be evaluated as described in Appendix.

If the normal component of dist.rbance velocity is continuous across the i.terface,

q%(_)= q,,(_), z _ c, (30)

thenfro,l,Eq,.(27)-(2S)

c i,,,.,(_o)= [(q'(_)- _(;')] 2_(_o- _)ds. (4(})

The wall i.terference velocity is represented by contour distribution vortices, whose

de.sity is eq.al to the discontinuity of the ta.gential component of velocity.

Conversely, if tile ta.gential component of disturbance velocity is continuous,

_,(_)= q,(_), , _ c, (41)

then

/c 2a'(zolwu,(Zo) - - [(qn(z) - _'. (z)] as. (42)
Z)

The wall interference velocity is represented by contour distribution sources, whose den-

sity is equal and opposite to the discontinuity of the normal compone.t of velocity.

The single-step convergence formula of Judd, Wolf, and Goodlter [30] can be derived

from Eq.(38) by taking the limit as as z0 becomes a point of interface C, by analogy with

Eqs.(24) anti (29), and elhninating w_ from Eq.(23).
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Appendix

The Cauchy type integral, Eq.(24) or (38), is easily evaluated by using a technique

from Ref.[31]. Approximating the contour C by line segments, the integral

1 /c f(z)dz (43)w,,,(zo) - 2.i z - zo

reduces to the sum

where

Ww(Zo) = E Ajww(Zo), (44)

J

1 f zi* '
Aj'w_(zo)- 2hi , ,j

is the contribution of the j-th segment.

f(z)

Z -- Z 0
dz (45)

Assuming a linear variation of the density function f between the segment end points

z I and zj+l:

f(z) = fj + "_+' - fj (z- z i )
zj+ 1 - z i

- fJ+' - fJ (z - zo) + fj-_,
z_+ 1 -- zj

ZO -- Zl _ f j Z 0 -- Z)+ I

Zj.Jrl -- Zj Z 3+1 -- Z 3

(46)

and substituting it in Eq.(45), we find

- 1 [ z0 - zj z0 - zj-_l
A,u,,,,(Zo)- fj+' fi + fj+, fj

2 _ i _ [ z 1+ , - zj zj + l - zj
In z_+, - zo (47)

Z3 -- Z o
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